Research
Dr. Nakalembe leads the Xylem Lab at the University of Maryland's Department of Geographical Sciences, where she combines Earth Observations and Machine Learning to develop data-driven solutions focused on Africa. Through close collaboration with end-users, she transforms scientific research into practical applications for decision-making. Her doctoral work on remote sensing directly contributed to Uganda's Disaster Risk Financing Project, benefiting 370,000 people and saving $11 million in food aid costs.
Harvest Africa
Harvest Africa Program aims to develop research methods and deploy solutions for stakeholders, including government, regional, and humanitarian organizations. The Harvest Africa priorities include:
Improving monitoring and early warning systems that provide actionable data and information on agricultural productivity and food security at multiple scales
Advancing EO-AI methods that underpin the data and systems
Transferring capacity to national and local users for decision-making and
Developing strong long-term partnerships
Devex. Authors: Nicki McGoh, Catherine Nakalembe // 04 October 2021
AgriPulse, July 21, 2021, Authors: NASA Harvest/ University of Maryland
Eos Science News by AGU, Authors: C. Nakalembe, C. Justice, H. Kerner, C. Justice and I. Becker-Reshef, 25 January 2021
Journal Articles
Nakalembe, Catherine, and Hannah R. Kerner. "Considerations for AI-EO for agriculture in Sub-Saharan Africa." Environmental Research Letters (2023). Published 24 March 2023
Borges DE, Ramage S, Green D, Justice C, Nakalembe C, Whitcraft A, Barker B, Becker-Reshef I, Balagizi C, Salvi S, Ambrosia V. Earth observations into action: the systemic integration of earth observation applications into national risk reduction decision structures. Disaster Prevention and Management: An International Journal. 2023 Apr 5.
Magadzire, T., Hoell, A., Nakalembe, C., and Tongwane, M. (2022). Recent advances in agrometeorological analysis techniques for crop monitoring in support of food security early warning. Frontiers in Climate, 4:950447.
K. E. Joyce, C. L. Nakalembe, C. G ́omez, G. Suresh, K. Fickas, M. Halabisky, M. Kalamandeen, and M. A. Crowley. Discovering inclusivity in remote sensing: leaving no one behind. Frontiers in Remote Sensing, Front. Remote Sens., 01 July 2022
C. Nakalembe and H. R. Kerner. Applications and Considerations for AI-EO for Agriculture in Sub-Saharan Africa. In 36th Annu. Conf. Artif. Intell. Assoc. Adv. Artif. Intell., 2022
Nakalembe, C., Zubkova, M., Hall, J. V., Argueta, F., & Giglio, L. (2022). Impacts of large-scale refugee resettlement on LCLUC: Bidi Bidi refugee settlement, Uganda case study. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac6e48
Tseng, G., Zvonkov, I., Nakalembe, C. L., & Kerner, H. (2021). CropHarvest: A global dataset for crop-type classification. Thirty-Fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2). Retrieved from https://openreview.net/forum?id=JtjzUXPEaCu
seng, H. Kerner, C. Nakalembe, and I. Becker-Reshef. Learning to predict crop type from heterogeneous sparse labels using meta-learning. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Work., pages 1111–1120, 2021
Paliyam, M., Nakalembe, C., Liu, K., Nyiawung, R., & Kerner, H. (2021). Street2Sat: A Machine Learning Pipeline for Generating Ground-truth Geo-referenced Labeled Datasets from Street-Level Images.
Adams EC, Parache HB, Cherrington E, Ellenburg WL, Mishra V, Lucey R and Nakalembe C (2021)Limitations of Remote Sensing in Assessing Vegetation Damage Due to the 2019–2021 Desert Locust Upsurge.Front. Clim. 3:714273. DOI: https://doi.org/10.3389/fclim.2021.71427
Robert Huppertz, Catherine Nakalembe, and Hannah Kerner. 2021. Using transfer learning to study burned area dynamics: A case study of Refugee settlements in West Nile, Northern Uganda. In KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/1122445.1122456
Nakalembe, C., Becker-Reshef, I., Bonifacio, R., Hu, G., Humber, M. L., Justice, C. J., . . . Sanchez, A.(2021). A review of satellite-based global agricultural monitoring systems available for Africa. Global Food Security, 29, 100543. https://doi.org/10.1016/j.gfs.2021.100543
Shukla, S., Macharia, D., Husak, G. J., Landsfeld, M., Nakalembe, C. L., Blakeley, S. L., . . . Way-Henthorne,J. (2021). Enhancing Access and Usage of Earth Observations in Environmental Decision-Making in Eastern and Southern Africa Through Capacity Building. Frontiers in Sustainable Food Systems, 5, 504063.https://doi.org/10.3389/fsufs.2021.504063
Nakalembe, C. (2020). Urgent and critical need for sub-Saharan African countries to invest in Earth observation-based agricultural early warning and monitoring systems. Environmental Research Letters, 15(12),121002. https://doi.org/10.1088/1748-9326/abc0bb
Tseng, G., Kerner, H., Nakalembe, C., and Becker-Reshef, I. (2020). Annual and in-season mapping of cropland at field scale with sparse labels. Proceedings of the Neural Information Processing Systems (NeurIPS) Workshops, Tackling Climate Change with AI
Kerner, H., Tseng, G., Becker-Reshef, I., Nakalembe, C., Barker, B., Munshell, B., . . . Hosseini, M. (2020). Rapid Response Crop Maps in Data Sparse Regions. KDD '20 Humanitarian Mapping Workshop, 7. https://arxiv.org/abs/2006.16866
Kerner, H. R., Nakalembe, C., Becker-Reshef, I. (2020). Field-Level Crop Type Classification with K Nearest Neighbors: A Baseline for a New Kenya Smallholder Dataset. Proceedings of the 1st Computer Vision for Agriculture Workshop, International Conference on Learning Representations (ICLR2020). https://arxiv.org/abs/2004.03023
Becker-Reshef, I., Justice, C., Barker, B., Humber, M., Rembold, F., Bonifacio, R., . . .Nakalembe, c., . . .Verdin, J. (2020). Strengthening agricultural decisions in countries at risk of food insecurity: The GEOGLAMCrop Monitor for Early Warning. Remote Sensing of Environment, 237. https://doi.org/10.1016/j.rse.2019.111553
Nakalembe, C. (2018). Characterizing agricultural drought in the Karamoja sub-region of Uganda with meteorological and satellite-based indices. Natural Hazards,91(3), 837–862. https://doi.org/10.1007/s11069-017-3106-x
Laso Bayas, J. C., See, L., Perger, C., Justice, C., Nakalembe, C., Dempewolf, J., & Fritz, S. (2017). Validation of Automatically Generated Global and Regional Cropland Data Sets: The Case of Tanzania. Remote Sensing, 9(8). https://doi.org/10.3390/rs90808158.
Nakalembe, C., Dempewolf, J., & Justice, C. (2017). Agricultural land-use change in Karamoja Region, Uganda. Land Use Policy, 62, 2–12. https://doi.org/10.1016/j.landusepol.2016.11.029
Nakalembe, C. L. (2017). AGRICULTURAL LAND USE, DROUGHT IMPACTS AND VULNERABILITY: A REGIONAL CASE STUDY FOR KARAMOJA, UGANDA, Ph.D Dissertation in Geographical ScienceUniversity of Maryland. Retrieved from https://drum.lib.umd.edu/handle/1903/20320